Positive solutions for fractional Laplacian system involving concave-convex nonlinearities and sign-changing weight functions
نویسندگان
چکیده
منابع مشابه
Multiple Positive Solutions for a Quasilinear Elliptic System Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions
Let Ω 0 be an-open bounded domain in R N ≥ 3 and p∗ pN/ N − p . We consider the following quasilinear elliptic system of two equations inW 0 Ω ×W 1,p 0 Ω : −Δpu λf x |u|q−2u α/ α β h x |u|α−2u|v|β,−Δpv μg x |v|q−2v β/ α β h x |u|α|v|β−2v, where λ, μ > 0, Δp denotes the p-Laplacian operator, 1 ≤ q < p < N,α, β > 1 satisfy p < α β ≤ p∗, and f, g, h are continuous functions on Ω which are somewher...
متن کاملExistence and multiplicity of nontrivial solutions for $p$-Laplacian system with nonlinearities of concave-convex type and sign-changing weight functions
This paper is concerned with the existence of multiple positive solutions for a quasilinear elliptic system involving concave-convex nonlinearities and sign-changing weight functions. With the help of the Nehari manifold and Palais-Smale condition, we prove that the system has at least two nontrivial positive solutions, when the pair of parameters $(lambda,mu)$ belongs to a c...
متن کاملMultiple Positive Solutions for Semilinear Elliptic Equations in RN Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions
and Applied Analysis 3 Theorem 1.1. Assume that (A1) and (B1) hold. If λ ∈ 0,Λ0 , then Eλa,b admits at least one positive solution inH1 R . Associated with Eλa,b , we consider the energy functional Jλa,b inH1 R : Jλa,b u 1 2 ‖u‖H1 − λ q ∫ RN a x |u|dx − 1 p ∫
متن کاملMultiple results for critical quasilinear elliptic systems involving concave-convex nonlinearities and sign-changing weight functions∗
This paper is devoted to study the multiplicity of nontrivial nonnegative or positive solutions to the following systems −4pu = λa1(x)|u|q−2u + b(x)Fu(u, v), in Ω, −4pv = λa2(x)|v|q−2v + b(x)Fv(u, v), in Ω, u = v = 0, on ∂Ω, where Ω ⊂ R is a bounded domain with smooth boundary ∂Ω; 1 < q < p < N , p∗ = Np N−p ; 4pw = div(|∇w|p−2∇w) denotes the p-Laplacian operator; λ > 0 is a positive pa...
متن کاملMultiplicity of Positive Solutions of laplacian systems with sign-changing weight functions
In this paper, we study the multiplicity of positive solutions for the Laplacian systems with sign-changing weight functions. Using the decomposition of the Nehari manifold, we prove that an elliptic system has at least two positive solutions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory
سال: 2021
ISSN: 1583-5022,2066-9208
DOI: 10.24193/fpt-ro.2021.1.28